Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-10-18 Hits: Popular:AG11 battery
Analysis of the preparation process of ternary materials for CR2032 battery
Ternary materials mainly refer to nickel-cobalt-manganese-lithium materials (NCM), but NCM materials (especially high-nickel 811, 532, etc.) generally have difficulties in synthesis and unstable cycle performance. This requires improvements in the synthesis process and roasting process. Today, the editor will take you to familiarize yourself with the preparation process of NCM precursors.
After more than 20 years of development, CR2032 battery have made great progress in both reliability and battery performance. A variety of positive electrodes have also been developed in this process, such as lithium cobalt oxide, which has the longest history, as well as lithium iron phosphate, lithium manganese oxide, etc. However, with the further improvement of the performance indicators of CR2032 battery, these materials can no longer meet the requirements, and ternary materials are born.
Ternary materials mainly refer to nickel-cobalt-manganese-lithium materials (NCM). Its biggest advantage is high capacity. For example, the capacity of NCM811 material can reach about 220mAh/g, which is significantly improved compared to lithium cobalt oxide (140mAh/g). NCM materials also have high voltage potential and can be charged to 4.35V. At the same time, the addition of manganese also reduces the cost of materials. However, NCM materials (especially high-nickel 811, 532, etc.) generally have problems of difficult synthesis and unstable cycle performance. This requires improvements in the synthesis process and calcination process. Today, the editor will take you to familiarize yourself with the preparation process of NCM precursors.
The electrochemical properties of NCM materials depend to a large extent on the morphology of the precursor and the uniformity of particle distribution. At present, the main method used in industry is the coprecipitation method, and the main raw materials are cobalt sulfate, nickel sulfate, nickel sulfate and sodium bicarbonate. Make ammonium bicarbonate into a solution, dissolve manganese sulfate, cobalt sulfate and nickel sulfate in deionized water at a mass ratio of 0.54:0.13:0.13, and slowly add ammonium bicarbonate solution and stir continuously. The pH value of ammonium bicarbonate solution is 7.78. At this pH value, Ni2+, Co2+, and Mn2+ will all generate carbonates, but no hydroxides and basic carbonates will be generated. The specific reaction equation is as follows:
The precipitate obtained by the reaction is filtered and washed with deionized water until no sulfate residue remains (using BaCl2 solution for detection until no white precipitate appears in the filtrate). The precipitate is placed in a vacuum oven and dried at 80°C to obtain the precursor of the ternary material-ternary carbonate. In actual production, the conversion rate of sulfate is closely related to the concentration of the reactants, the ratio between the reactants and the temperature of the reaction.
When the concentration of ammonium bicarbonate increases from low to high, the color of the solution changes from dark to light, to colorless, and then to dark. The color of the solution represents the residual metal ions in the solution. Therefore, there is an optimal value for the concentration of ammonium bicarbonate. Near this concentration, the metal ion precipitation effect is best. When it is less than or greater than this concentration, the metal ion precipitation will be insufficient, causing waste and environmental pollution. Secondly, the concentration ratio of ternary metal salt and ammonium bicarbonate will also affect the precipitation effect of metal ions. After fixing the concentration of ammonium bicarbonate, the amount of ammonium bicarbonate solution added was adjusted. It was found that with the addition of ammonium bicarbonate solution, the color of the solution gradually became lighter. When the ratio reached 1:5, the solution was basically colorless. The conversion efficiency at this time was calculated to be 91.2%. Increasing the amount of ammonium bicarbonate had little effect on the conversion efficiency. For lithium-ion battery materials, morphology also has a significant influence on electrical properties. In production, the precursor is generally required to be uniform spherical particles. In actual production, it was found that with the increase in the amount of ammonium bicarbonate, the spherical particle size of the precursor increased slightly. Therefore, the size of the precursor can be regulated according to demand and purpose.
Read recommendations:
What is the difference between lithium ion battery and lithium battery?18650 rechargeable battery li
Can Different Types of Lithium - Ion Batteries Be Compatible?
Last article:CR2032 button cell
Next article:cr2032 3v lithium battery
Popular recommendation
18650 1800mah battery
2023-03-22solar energy storage battery manufacture
2023-03-22801520 battery sales
2023-03-2218650 battery pack wholesale
2023-05-0918650 rechargeable battery lithium 3.7v 3500mah
2023-03-22102540 1100MAH 3.7V
2023-06-12Lithium Battery LQ-1236
2022-08-19801520 180MAH 3.7V
2023-06-1018650 2400mAh 3.7V
2022-06-20Ni-MH AA1000mAh 1.2V
2022-07-01Lithium Battery GN4825
2022-08-19601435 270MAH 3.7V
2023-06-123.2V 280Ah
2022-10-12R20
2022-08-19LR20
2022-07-01AAA Ni-MH battery
2023-06-2527A battery
2023-06-25703048 lipo battery
2023-06-25LR626 battery
2023-06-25CR2032 button cell battery
2023-06-25Lithium Ion Battery.1.5V rechargeable battery
2023-07-03Principle and application method of polymer lithium battery
2024-04-09What is the difference between ordinary batteries and lithium batteries?
2022-11-08CR2032 Button Cell Battery Overview
2025-01-07AG7 battery.What is the difference between soft pack lithium-ion batteries and hard pack lithium-ion
2023-11-09Prospects for the Development of Lithium Batteries
2023-06-01Lithium iron phosphate batteries are subject to temperature.18650 battery 4800mah
2023-08-22Design ideas of lithium iron phosphate battery management system.industrial energy storage battery m
2023-04-20How long is lithium battery used?
2023-03-07What are the main components of lithium battery electrolyte?
2022-11-22