Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-03-26 Hits: Popular:AG11 battery
In aaa alkaline battery management systems, do you know what are the commonly used SOC calculation methods?
1.2.2 Current sampling circuit
During current sampling, the parameters in the battery management system are an important basis for battery overcurrent protection. The current sampling circuit in this system is shown in Figure 2. When the battery is discharged, a constantan wire is used to detect the current signal, and the detected voltage signal is amplified by a differential mode amplifier and converted into a voltage signal of 0~5V and sent to the microcontroller. If the discharge current is too large and the voltage signal detected by the microcontroller is relatively large, it will drive the transistor to change the gate voltage of the MOS tube and turn off the discharge circuit. For example, for a 36V lithium manganate battery, the protection current is set to 60A. The resistance of constantan wire is about 5mΩ. When the current reaches 60A, the voltage of the constantan wire reaches about 300mV. In order to improve the accuracy, the voltage is amplified 10 times through the amplifier and sent to the microcontroller for detection.
1.2.3 Temperature detection
During the charging and discharging process of the battery pack, part of the energy is released in the form of heat. If this part of the heat is not removed in time, it will cause the battery pack to overheat. If the temperature of a single nickel-metal hydride battery exceeds 55°C, the battery characteristics will deteriorate, and the charge and discharge balance of the battery pack will be disrupted, resulting in permanent damage or explosion of the battery pack. In order to prevent the above situation from happening, the battery pack temperature needs to be monitored in real time and heat dissipated.
A thermistor is used as a temperature sensor for temperature sampling. Thermistor is a heat-sensitive semiconductor resistor whose resistance value decreases as the temperature increases. The resistance temperature characteristics can be approximately expressed by the following formula:
1.3 Balance module
Commonly used equalization methods for battery packs include shunt method, flying capacitor equalization charging method, inductive energy transfer method, etc. In this system, more I/O ports are needed to drive the switch tubes, and the I/O ports of the microcontroller are limited, so the charging balancing method of converting full charge to single charge is adopted. The schematic is shown in Figure 3. Q4 is the switch that controls the overall charging of the battery pack, and Q2, Q3, and Q5 are the switches that control the charging of a single battery. Taking a 10-cell lithium manganate battery pack as an example, the voltage at both ends of the main coil of the transformer is 42V, and the voltage of the secondary coil is the battery's rated voltage of 4.2V. At the beginning, Q4 is turned on, Q2, Q3, and Q5 are turned off. The voltage of a single battery continues to rise. When it is detected that the voltage of a certain battery reaches the rated voltage 4.2V, the voltage detection chip sends a driving signal, turns off Q4, and turns on Q2. , Q3, Q5, the entire system enters the single charging stage, and the battery that is not fully charged continues to be charged, so that the battery that reaches the rated voltage keeps the rated voltage unchanged. After testing, the voltage difference will not exceed 50mV.
2SOC power detection
In aaa alkaline battery management systems, commonly used SOC calculation methods include open circuit voltage method, Coulomb calculation method, impedance measurement method, and comprehensive table lookup method [3].
(1) The open circuit voltage method is the simplest measurement method, which mainly determines the size of the SOC based on the size of the battery's open circuit voltage. It can be seen from the operating characteristics of the battery that there is a certain corresponding relationship between the open circuit voltage of the battery and the remaining capacity of the battery.
(2) The Coulomb calculation method measures the charging and discharging current of the battery, integrates the product of the current value and the time value, and then calculates the amount of electricity charged and discharged by the battery, and uses this to estimate the SOC value.
(3) The impedance measurement method uses a certain linear relationship between the internal resistance of the battery and the state of charge SOC, and calculates the internal resistance of the battery by measuring the voltage and current parameters of the battery, thereby obtaining an estimate of the SOC.
(4) In the comprehensive look-up table method, the remaining capacity SOC of the battery is closely related to the voltage, current, temperature and other parameters of the battery. By setting up a related table and inputting parameters such as voltage, current, temperature, etc., the remaining capacity value of the battery can be queried.
In this design, the software programming method is adopted from the aspects of circuit integration, cost, and performance of the selected MCU. Combining several methods, it is more appropriate to use the Coulomb calculation method.
(1) Use C to represent the total power released when the lithium battery pack drops from 42V to 32V.
(2) Use eta to represent the ratio of the amount of electricity released to C after the current i has passed time t.
Among them, CRM is the remaining power. Let ΔCi = i × Δt, which represents the discharge amount of the battery pack discharged by i during the stationary time t; or the charging amount of the battery pack charged by i. The remaining capacity is actually the calculation and accumulation of ΔCi. Set an appropriate sampling time Δt, measure the current current value, and then calculate the product to obtain the change in the remaining capacity CRM within Δt time, so as to continuously update the value of CRM to achieve SOC power detection.
Read recommendations:
Why does lithium battery power information use lithium iron phosphate?803040 polymer battery
Last article:18650 li ion battery
Next article:lithium battery 18650
Popular recommendation
801520 battery Manufacturing
2023-03-22502030 battery sales
2023-03-221.5V rechargeable battery
2023-03-223.7 volt battery 18650
2023-03-22502030 battery Manufacturing
2023-03-22Ni-MH AAA800mAh 1.2V
2022-07-01Coin Battery CR 927
2022-09-27Lithium Battery GN6020
2022-08-19401030 90mAh 3.7V
2022-07-01Cabinet type energy storage battery 20KWH
2022-11-08801620 180mAh 3.7V
2022-06-27Lithium Battery LQ-1210
2022-08-19801538 480mAh 3.7V
2022-06-27Lithium-ion battery GN500
2022-07-2912V 27A
2022-10-09401030 polymer battery
2023-06-2518650 battery pack manufacturer
2023-06-259V carbon battery
2023-06-25LR936 battery
2023-06-256F22 carbon battery
2023-06-25Lithium iron phosphate battery pack and ternary battery
2024-09-09Classification of low-temperature lithium batteries
2024-07-25How to charge the new battery
2023-05-10LR521 battery.Can lithium-ion batteries only be charged and discharged 500 times?
2023-11-27Lithium power battery daily maintenance.18650 battery 3.7v 6000mah
2023-07-12How to control the customized charging and discharging process of 18650 lithium batteries?3.7v 18650
2023-09-08Technologies related to negative electrode free batteries.18650 lithium ion battery cell
2023-07-05Lithium ion battery separator structure.battery 18650 rechargeable
2023-07-20AG1 battery.What is the process for customizing 18650 lithium-ion battery packs?
2023-10-13AG10 battery.18650 lithium ion battery welding method
2023-10-13