Lithium Battery 3.7V Lithium Polymer Battery 3.2V LifePo4 Battery 1.2V Ni-MH Battery Button Coin Battery
3.7V Battery Pack 7.4V Battery Pack 11.1V Battery Pack 14.8V Battery Pack Other Battery Pack
Sino Science&Technology Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of Lifepo4 batteries,energy storage battery,portable UPS power supply,personalized customization lithium battery pack etc .
Environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery,3.7V lithium polymer battery, NiMH battery , NiCD battery ,Lead acid battery,dry cell battery ,alkaline battery ,heavy duty battery, button cell battery etc. we devote to R&D,innovation ,production & sales
Shenzhen Green Power Energy Battery Co.,ltd specializes in a wide range of digital battery such as environmental cylindrical 18650 21700 32700 26650 14500 18500 lithium ion rechargeable battery, LifePO4 battery, 3.7V lithium polymer battery, NiMH battery, NiCD battery, dry cell battery, alkaline battery, heavy duty battery, button cell battery etc. we devote to R&D, innovation, production & sales. With automatic production machines we have been exported goods to all over the world over 15years. We have complete exported certificate such as KC, CE, UL, BSCI, ROHS, BIS, SGS, PSE etc
Dongguan Datapower New Energy Co.,ltd is a high-tech production enterprise which specialize in the R&D and production&sale of lithium polymer batteries,drone battery,airplane batteries &battery pack etc.
Anhui Seong-hee New Energy Technology Co.,ltd is a high-tech production enterprise which specialize in the R&D and production of primary batteries. And mainly produces and sells alkaline batteries & carbon zinc batteries. there are size AA, AAA, C, D, 9V etc
Guizhou STD Battery Co.,ltd is a high-tech production enterprise which specialize in the R&D and production & sale of lithium polymer batteries, drone battery, airplane batteries & battery pack etc.
release time:2024-07-12 Hits: Popular:AG11 battery
How to set up a safe lithium battery protection circuit
According to statistics, the global demand for lithium-ion batteries has reached 1.3 billion, and with the continuous expansion of application areas, this data is increasing year by year. For this reason, with the rapid increase in the use of lithium-ion batteries in various industries, the safety performance of batteries has become increasingly prominent, requiring not only lithium-ion batteries to have excellent charging and discharging performance, but also higher safety performance. So why do 18650 battery catch fire or even explode? Are there any measures to avoid and eliminate them?
Laptop battery explosions are not only related to the production process of the lithium battery cells used in them, but also to the battery protection board encapsulated in the battery, the charging and discharging management circuit of the laptop computer, and the heat dissipation design of the laptop computer. The unreasonable heat dissipation design and charging and discharging management of the laptop computer will cause the battery cell to overheat, thereby greatly increasing the activity of the cell, and at the same time increasing the probability of explosion and combustion.
Analysis of the composition and performance of lithium battery materials
The negative electrode material generally uses carbon materials, and the current development is relatively mature. The development of positive electrode materials has become an important factor restricting the further improvement of lithium-ion battery performance and further reduction of prices. In the current commercial production of lithium-ion batteries, the cost of positive electrode materials accounts for about 40% of the total battery cost. The reduction in the price of positive electrode materials directly determines the reduction in the price of lithium-ion batteries. This is especially true for lithium-ion power batteries. For example, a small lithium-ion battery for a mobile phone only needs about 5 grams of positive electrode materials, while a lithium-ion power battery for driving a bus may require up to 500 kilograms of positive electrode materials.
Although there are many types of positive electrode materials that can be used as lithium-ion batteries in theory, the main component of common positive electrode materials is LiCoO2. When charging, the potential applied to the two poles of the battery forces the positive electrode compound to release lithium ions and embed them into the carbon with a sheet structure of negative electrode molecules. When discharging, lithium ions are precipitated from the carbon with a sheet structure and recombined with the positive electrode compound. The movement of lithium ions generates current. This is the working principle of 18650 battery.
Lithium battery charge and discharge management design
When charging a lithium battery, the potential applied to the two poles of the battery forces the positive electrode compound to release lithium ions and embed them into the carbon with a sheet structure of negative electrode molecules. During discharge, lithium ions are precipitated from the carbon in the sheet structure and recombined with the positive electrode compound. The movement of lithium ions generates current. Although the principle is very simple, in actual industrial production, there are many more practical issues to consider: the positive electrode material needs additives to maintain the activity of multiple charges and discharges, and the negative electrode material needs to be designed at the molecular structure level to accommodate more lithium ions; the electrolyte filled between the positive and negative electrodes, in addition to maintaining stability, also needs to have good conductivity to reduce the internal resistance of the battery.
Although lithium-ion batteries have the advantages mentioned above, they have relatively high requirements for protection circuits. Overcharging and over-discharging should be strictly avoided during use, and the discharge current should not be too large. Generally speaking, the discharge rate should not be greater than 0.2C. The charging process of 18650 battery is shown in the figure. In a charging cycle, lithium-ion batteries need to detect the battery voltage and temperature before charging begins to determine whether they can be charged. If the battery voltage or temperature exceeds the range allowed by the manufacturer, charging is prohibited. The voltage range allowed for charging is: 2.5V~4.2V per battery.
When the battery is in deep discharge, the charger must have a pre-charge process to make the battery meet the conditions for fast charging; then, according to the fast charging speed recommended by the battery manufacturer, generally 1C, the charger charges the battery with constant current, and the battery voltage rises slowly; once the battery voltage reaches the set termination voltage (generally 4.1V or 4.2V), the constant current charging is terminated, the charging current decays rapidly, and the charging enters the full charging process; during the full charging process, the charging current gradually decays until the charging rate drops below C/10 or the full charging time expires, and then it enters the top cut-off charging; during the top cut-off charging, the charger replenishes the battery with a very small charging current. After a period of top cut-off charging, the charging is turned off.
Read recommendations:
What is the difference between ternary lithium lithium battery and lithium iron phosphate battery?li
Types and Characteristics of Lithium Polymer Batteries
Popular recommendation
lithium battery pack 48v 120ah
2023-05-09502030 polymer battery
2023-03-22602030 polymer battery
2023-03-2218650 battery 3.7v 3500mah
2023-03-223.2v 20ah lifepo4 battery cell
2023-03-22551235 180mAh 3.7V
2022-08-19701221 120mAh 3.7V
2022-07-01Bluetooth headset
2022-09-22601435 270mAh 3.7V
2022-08-19Home energy storage battery FBC-HS03
2022-11-04702535 600mAh 3.7V
2022-06-27Coin Battery CR 927
2022-09-27LR6
2023-02-07Li-ion 26650 5000mAh 3.7V
2022-06-20602535 500mAh 3.7V
2022-07-01CR2430 battery
2023-06-25lithium ion battery 18650 price
2023-06-25NiMH No.7 battery
2023-06-256F22 battery
2023-06-2518650 1800mah battery
2023-06-25How to Discharge Cylindrical Lithium Batteries
2025-02-26The disadvantages of using LCD batteries in UPS UPS.energy storage battery for solar system Processi
2023-04-12Safety Issues of Lithium - Ion Batteries
2025-03-26LR521 battery.Can lithium-ion batteries only be charged and discharged 500 times?
2023-11-27Application Areas of Lithium - Polymer Batteries
2025-04-08AG3 battery.Analysis of 18650 lithium battery PACK process requirements
2023-10-13What are the types of lithium batteries
2022-11-21Why do customized lithium batteries come with protective plates?
2023-08-01Lithium battery housing characteristics
2022-11-15Portable car startup power introduction.industrial energy storage battery Factory
2023-05-13